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Abstract. The drainage of liquid in a foam may be described in terms of a nonlinear partial
differential equation for the foam density as a function of time and vertical position. We review
the history and recent development of this theory, analysing various exact and approximate
solutions and relating them to each other.

1. Introduction

Liquid foams are ubiquitous in nature and occur whenever gas/liquid systems are processed
in industry. Emulsions, provided that they are not of so fine a scale as to bring us into the
regime of microemulsions, are closely similar and may well be covered by the same theory
(in which case the wordcreamingmay replace drainage).

Figure 1. For low liquid fractions almost all the liquid is in the network of the Plateau borders.
The junction of four such borders is shown. (The thin films which separate the bubbles are not
drawn.) The borders join in a tetrahedral arrangement with angles of approximately 109◦.

The properties of such systems are distinctive: they cannot be regarded as simple liquids
or solids [1]. Typically foams have a complex disordered structure, the elements of which
are individual liquid films (cell faces), meeting in Plateau borders (cell edges), as shown
in figure 1 and figure 2. The Plateau borders, whose cross sections expand as more liquid
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Figure 2. A single cell with its associated Plateau borders.

is incorporated into the foam, form a disordered network. The nodes of the network are
junctions of at least four borders. It is useful to distinguish the two extremes of dry foam
and wet foam (Polyederschaum and Kugelschaum) according to the value of the liquid
fraction 8`. For small8` the Plateau borders are narrow and they may be approximated
by lines for many purposes. One of the equilibrium rules attributable to Plateau specifies
that all junctions are fourfold in this case. In the opposite limit8` approaches the value for
which the bubbles separate, and the structure is best visualized as consisting of contacting
soft spheres.

In equilibrium under gravity the liquid fraction8` has a vertical profile, whose form
has been discussed by Princen and Kiss [2]. Typically a wet foam is made by some process
of shaking, stirring or bubble nucleation. The excess liquid then drains out of it (or bubbles
rise, which amounts to the same thing). This may in turn lead to the instability of the foam
with respect to film rupture, but we shall at first disregard that aspect of foam physics.
We also assume that drainage is sufficiently rapid that the diffusion of gas between cells is
negligible. This is the process which leads to foam coarsening over long times.

We are then left with the problem: how can we describe and analyse the drainage
process itself? We shall give an answer to this question in the form of a partial differential
equation for the liquid (and other related quantities) as a function of position and time, and
describe various solutions both analytically and numerically.

Most of the essentials of the theory are to be found in the work of Lemlich and
collaborators [3]. However the transparency and scope of the model were obscured by
various complications and additional features, and its scope and validity have emerged only
recently. Our intention here is to discuss itab initio and catalogue its simplest solutions.
Most of these are useful as starting points for the description of some phenomenon or
experiment, and it appears to do so well in many cases. We therefore believe that the basic
equation deserves to be calledthe foam drainage equationas we do here, although it may
require correction or elaboration for some purposes.

Our own recent work was stimulated by an experiment [4] in which liquid was
continuously fed in at the top of an initially dry foam as shown in figure 3. It was found
that the wetted region advances downward with a sharply defined profile, whose velocity is
proportional to the square root of the input flow rate. The profile is not quite as sharp as it
appears visually, since a foam becomes opaquely white at quite a small value of the liquid
fraction.

The equation which we shall describe has, in particular, an analytical solution which
matches this behaviour in the form of a solitary wave, that is, a wave of constant profile.
It was first derived by Goldfarb, Kahn and Schreiber [5] (see also [6]), and was derived
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Figure 3. A recent experimental set-up [18] for the measurement of drainage profiles is
sketched. When a dry foam is wetted from above at a constant rate, the interface of fixed profile
between wet and dry foam moves downwards at constant velocity, as explained in section 6.

independently by us on the basis of approximations suggested by the experiment cited above.
This kind of solitary wave (which has been called a dissipative soliton [7]) occurs in

other contexts such as the phenomenon of bores on rivers. The case considered here seems
to be the best available prototype of such a wave in view of its mathematical simplicity and
its straightforward experimental realization.

Another practical case of obvious importance is the free drainage of an initially uniform
wet foam. This can be treated numerically by elementary methods using the drainage
equation and there are useful approximate analytical solutions in some limits.

In addition we discuss various other cases which are mathematically and experimentally
tractable, including one solitary wave overtaking another, and sinusoidally modulated input
flow.

The emphasis of the present review is on the details and relationships of these solutions,
to clear the ground for further experimental tests. The free-drainage case is particularly
awkward. A careful analysis is needed, in order to appreciate the role and validity of
various useful analytical approximations.

2. The model

The model is based on a description of a relatively dry foam and therefore should apply
best in this limit. This choice was not entirely one of convenience: in many practical
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cases the sample size and bubble size are such that at least the equilibrium foam is very
dry. However, this can depend on the precise circumstances, for example one’s choice
of beer. . ..

A number of important initial assumptions are made. Firstly, the contribution to drainage
of liquid flow in films is entirely neglected. Thus, following the lead, for example, of Mysels
et al [8], we consider only flow along the Plateau borders. These form a network of channels
meeting in tetrahedral junctions. We further assume that the flow in the channels is of the
Poiseuille type, that is, with zero velocity at the boundaries.

We also assume that the shearing motion associated with the flow through the junctions
makes a negligible contribution to the viscous dissipation, which is easily accepted if the
flow in the borders themselves is of Poiseuille type, since the flow in the borders then
involves much larger amounts of shear (at least in the dry limit).

The other assumptions are relatively straightforward: we use a constant surface tension
γ , not including any effects of surface elasticity, and constant liquid (bulk) viscosityη`.

In due course we shall also have to consider the boundary conditions on foam density
at the top and the bottom of the foam, which are easily ignored in theory but are important
in relation to experiment.

It can hardly be claimed that the validity of these assumptions and approximations is
self-evident, and we cannot yet map out clearly their regimes of reliability. In particular, the
assumption of Poiseuille flow requires a sufficient surface viscosity, to render the surfaces
of the Plateau borders effectively rigid. Kraynik [9] has suggested the criterion for the
validity of this assumption, namelyηs > 10η8l

1/2d, whereηs andη are surface and bulk
viscosities,8l is the liquid fraction, andd is the average cell diameter. The neglect of film
flow may also depend to some extent on this assumption. Only a more detailed description
of local flow patterns can resolve such questions, and this challenge may be met before
long. Computer simulation methods [10, 11] are available to accomplish this. For the time
being, the model rests largely on the circumstantial evidence of its success in relation to
what follows.

3. The foam drainage equation

The Plateau borders, through which drainage is assumed to proceed, are the curved triangular
channels of liquid at the intersection of the films separating the bubbles which constitute the
foam. On the basis of simple considerations of continuity and pressure balance, as well as
the treatment of dissipation in a manner analogous to Darcy’s law in the theory of porous
media, one can develop [3, 5, 12] the following equation for the cross-sectional area of
these Plateau borders, which are idealized as vertical channels:

∂α

∂τ
+ ∂

∂ξ

(
α2 −

√
α

2

∂α

∂ξ

)
= 0. (1)

These vertical channels are supposed to represent a network, in which the channels are tilted
at all angles; see figure 2.

Equation (1) is simply the continuity equation for the flow rate, which is the expression
between brackets. This neat form is achieved by adopting the following definitions.
Dimensionless coordinates corresponding to vertical positionx (measured downwards) and
time t are introduced by definingx = ξx0 and t = τ t0 where the units are given by
x0 = √

Cγ/ρg and t0 = η∗/
√

Cγρg. The physical parameters areγ (surface tension),ρ
(liquid density),g (acceleration due to gravity), andη∗ (effective viscosity). For a discussion
of the meaning of the effective viscosityη∗, refer to the appendix. We have also introduced
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a mathematical constant

C =
√√

3 − π/2

related to the triangular form of the Plateau border cross section. The cross-sectional area
A of the Plateau border is reduced to the dimensional variableα by scaling it asA = αx2

0.
This determines the liquid fraction8` = NA/S, given the number of Plateau bordersN and
the cross sectionS of the tube. Note thatx2

0 is (to within a constant) the capillary constant
which has commonly been used in the theory of surfaces, and the height of the meniscus
is a useful indication of the magnitude ofx0. The constantt0 which sets the time-scale is
less familiar but contains the obvious proportionality to viscosity.

The basic equation (1) is a nonlinear partial differential equation for the areaα as a
function of depthξ and timeτ . Its solution describes (for fixedτ ) an instantaneous snapshot
of the vertical density profile of the foam.

Most of the interesting properties of the equation arise from its nonlinearity. It is not
one of the favourite nonlinear equations found in mathematical textbooks such as that of
Whitham [13], which describes some equations of this general type. It nevertheless has
quite simple and elegant solutions.

The equation is most easily presented as applying to vertical channels [12], but a careful
consideration of the more realistic model of a network leads to the same equation if the
effective viscosity is redefined. This development is outlined in the appendix.

Given the intensive research currently under way on transport in porous media, it is
natural to ask how our subject relates to it. In a porous medium one may also have a
random network of channels, just as we have here, and Poiseuille flow may be assumed.

The difference lies in the variability of the channel cross sections in a foam, in response
to the local fluid pressure. This means that Darcy’s law has a more restricted meaning,
because the structure of the medium is changing as the flow conditions are changed.
Something similar does arise in soil science, but without such a simple relationship between
pressure and channel cross section as we have here.

4. Boundary conditions at top and bottom

An awkward feature of the application of equation (1) to practical situations is the necessity
of imposing boundary conditions at the top and the bottom of the foam sample.

A fixed flow rate at either point corresponds to

α2 −
√

α

2

∂α

∂ξ
= constant. (2)

This applies at the top, for example, whenever liquid is added at a constant rate (forced
drainage). For free drainage the constant is zero there.

The boundary condition at the bottom is more problematic, partly because the theory
is based on the consideration of dry foam, while in reality the foam is wet at its bottom
extremity where it touches the liquid. Even the detailed study of Princen and Kiss [2] of
the equilibrium profile under gravity resorted toad hocdata fitting in that limit.

Consider the case of a foam which does not initially have any liquid beneath it. In
that case the no-flow boundary condition is appropriate, but only as long as8` < 8

(c)
` ,

the critical value at which bubbles come apart. This transition was termed the rigidity-loss
transition by Bolton and Weaire [14]. Once8` = 8

(c)
` the appropriate boundary condition

is to fix 8` at this value (or the corresponding condition forα). As long as the bulk liquid
remains in contact with the foam, this should remain the case. We believe that this is the
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best approximation over a wide range of conditions, reasoning as follows. In the wet limit,
it is better to think in terms of near-spherical bubbles, rather than Plateau borders, as the
essential elements of the structure. Each layer of bubbles is subject to a net downward force
due to its contacting neighbours above and below, which is approximately proportional to
D ∂8`/∂x for 8` < 8

(c)
` and whereD denotes the bubble diameter. (Unfortunately, this

is not exact even in the extreme limit8` → 8
(c)
` since Morse and Witten [15] have shown

that bubble interactions do not quite conform to an elementary form, as in Hooke’s law,
but this does not affect our present argument.) A bubble at the foam/liquid interface has
no neighbours beneath it, so the above force is replaced by one proportional to8

(c)
` − 8`.

Since other forces (buoyancy, drag) are of the same order as in the interior we require for
equilibrium

8` ≈ 8
(c)
` − D

∂8`

∂x
. (3)

Rather generally∂8`/∂x is of orderL whereL is the vertical length of the foam specimen
andD � L. In that case we expect

8` ≈ 8
(c)
` at the bottom. (4)

As static equilibrium is approached,∂8`/∂x becomes of orderD/x2
0 and the approximation

fails unlessD � x0. We have not yet attempted to frame a more correct boundary condition
in that limit. To do so requires a detailed theory of wet foam: again it should be stressed
that the foam drainage equation (1) is derived from assumptions which best apply to dry
foam and this will remain an awkward technicality of its application until it is generalized.

5. Trivial solutions: equilibrium and steady drainage

5.1. Equilibrium

There are some trivial solutions to be considered at this stage. Firstly, there is the equilibrium
solution defined by the absence of flow throughout the foam. The flow rate is the expression
in brackets in equation (1), which we set equal to zero. The following profile emerges as a
solution:

αeq(ξ) = 1(
α

−1/2
1 + ξ1 − ξ

)2 (5)

(whereα1 is the required value atξ1). It has been commonly adopted in the description of
foam equilibrium, following the work by Princen and Kiss [2].

5.2. Steady drainage

Since the basic equation is homogeneous inα and contains no explicit dependence onξ or
τ , it can also be solved by a constant solution, corresponding to a steady-state flow:

α(ξ, τ ) = α0 (constant). (6)

The flow rate is thenα2
0; this implies that the velocity of the flow isα0 and therefore we

deduce the relationship: flow rate∝ α2 ∝ 82
`. This is a key feature of the theory consistent

with the experiments mentioned in the next section as well as the earlier work of Shih and
Lemlich [16]. Such a dependence clearly distinguishes the case of foam drainage from that
of the flow through porous media.
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Already this implies that, if we can find a meaningful solution of the solitary wave type
(with 8` = 0 downstream), its velocityv must be proportional to the square root of the
flow rate, since the upstream flow rate will bevα. This was indeed the original finding in
the experiment of Weaireet al [4] (see figure 3).

Figure 4. The two possible steady-state liquid fraction profiles corresponding to a constant flow
from above are shown: (a) forα < α0 and (b) for α > α0, whereα0 is the limit of α as
ξ → −∞ (infinite height).α0 is set equal to unity andξa equal to zero, in (8).

The solutions (5) and (6) may be generalized by considering a flow rate which is a
constant (not necessarily zero) everywhere, and allowing the actual steady profileα to
depend on position. We now have

α2 −
√

α

2

∂α

∂ξ
= α2

0 (constant) (7)

which can be integrated to obtain implicit solutions:

ξ + ξa = 1

2
√

α0


arctan

√
α

α0
− arctanh

√
α

α0
α < α0

arctan
√

α

α0
− arccotanh

√
α

α0
α > α0.

(8)

Both solutions are depicted in figure 4. The first type has little direct physical relevance, so
far as we are aware, but the second one is useful in describing steady flow through a foam
in contact with liquid at the bottom. Mathematically, the two solutions relate in appropriate
limits to those of the previous section, and the one which follows.

6. The solitary-wave solution: wetting of a dry foam

A less trivial solution is obtained if it is assumed that the drainage profile has the form of a
solitary wave, that is a wave of constant profile, moving with a (constant) velocityv. The
solitary-wave solution corresponding to this is

α(ξ, τ ) =
{

v tanh2(
√

v[ξ − vτ ]) ξ 6 vτ

0 ξ > vτ
(9)

which is shown in figure 5. It key features are as follows. The amplitude well behind the
advancing wave front is given byα = v, as expected from the argument in the previous
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Figure 5. (a) A solitary wave is shown moving through the foam. At the left-hand side (top
of the foam) the liquid fraction tends to a constant, corresponding to the wet foam in figure 3.
At the bottom the liquid fraction is zero corresponding to a dry foam. This solution is given
by (9). (b) The alternative solution given by (10). In both casesα0 andv are taken to be unity.

section. The width of the transition region, i.e., the interval over whichα rises from zero
to its asymptotic valuev, is proportional tov−1/2, or alternatively to (flow rate)−1/4.

Another solution can be derived (although its applicability is limited to the region where
its divergences can be avoided):

α(ξ, τ ) = v cotanh2
(√

v [ξ − vτ ]
)

whereξ 6 vτ. (10)

It is worthwhile to note that the static limit, i.e., the limitv → 0, of the solitary wave
(10) corresponds to the equilibrium, or static, solution (5). Thev → 0 limit is more
problematical for the solitary-wave solution (9), which obviously does not conform to the
static solution (5). This discrepancy can be traced to the boundary conditions necessary to
produce such a solution. These stipulate the given flow rate atξ → −∞ (top of the foam)
and zero flow rate atξ → +∞, which implies zero foam density (or liquid fraction). A
real experiment does not start with a perfectly dry foam. In order for this solitary wave to
be relevant the upstream value ofα must be much greater than the static value below.

Such solitary waves exist only for downward-moving profiles, i.e. dependencies on the
combinationξ − vτ , wherev > 0. Other solutions are available for upward-moving waves
where the natural independent variable isξ + vτ (again takingv > 0):

α(ξ, τ ) = v tan2(
√

v[ξ + vτ ]) whereξ + vτ > 0 (11)

and

α(ξ, τ ) = v cotan2(
√

v[ξ + vτ ]) whereξ + vτ < 0 (12)

which are less interesting in relation to experiment.
As the equation does not depend explicitly onξ or τ , it is always possible to construct

new solutions from those above by introducing offset values forξ or τ , i.e., making the
replacementsξ → ξ + ξa or τ → τ + τa, whereξa andτa are arbitrary constants.

7. The solitary wave on an already wetted foam

The above is a special case of a more general solution in whichα tends to finite values at
both ξ → +∞ and ξ → −∞. This corresponds to steady drainage on both sides of the
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Figure 6. A double solitary wave is shown, as given by (13). Initially, a single wave is
established (dashed curves) using a low flow rate. Increasing the flow rate (full curves) results
in the creation of a second wave on top of the original one. As the second wave has a larger
velocity, it catches up with the first one and coalesces with it to form a single solitary wave.

front. This type of solution can also obtained analytically but only in an implicit form:

ξ − vτ = 1

v − 2va

[√
v − va

2
ln

∣∣∣∣√α − √
v − va√

α + √
v − va

∣∣∣∣ −
√

va

2
ln

∣∣∣∣√α − √
va√

α + √
va

∣∣∣∣] (13)

where v is the wave-front velocity, andva is the value ofα for ξ → +∞. The value
of α (at ξ → −∞) is given byvb = v − va as is shown in figure 6. In order to obtain
downward-moving waves we must requirevb > va, which impliesv > 2va.

This analysis suggests the following experiment. We start with a dry foam and wet it
from the top with a flow rateqa = v2

a resulting in a single solitary wave as discussed in
the previous section. After some time, we increase the flow rate to a valueqb = v2

b . This
will result in a second solitary wave on top of the first wave, which travels with a higher
velocity v. It will therefore catch up with the first wave and merge with it. The final profile
corresponds again to a single solitary wave with a velocityvb. Equation (13) then states that
the catch-up velocityv obeys a particularly simple addition theoremv = va + vb. Figure 6
shows a numerical calculation of the catch-up phenomenon, from which the addition formula
could be verified.

An alternative argument leading to the addition formula is as follows. At the top of the
foam (ξ → −∞) the flow rate isqb = v2

b and the Plateau border cross section isαb = vb;
at the bottom (ξ → −∞) the liquid is drained at a rateqa = v2

a and the Plateau borders
have a cross sectionαa = va. Across the front, we can now calculate both the flow-rate
increase1q = qb − qa = v2

b − v2
a and the cross section available to accommodate this flow

1α = vb − va. Substituting both results in the general flow-rate equation1q = v 1α, we
deducev = va + vb. This avoids the tedious mathematics required to obtain equation (13)
given thea priori assumption that a sharp front exists to separate the two regions of flow.

The catch-up velocity for small flow-rate disturbances (vb → va) will be smoothed out
with a velocity which is twice the original velocity:

v
∣∣
vb→va

≈ 2va.

In the following section this result is found to be consistent with a linear stability analysis.
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8. Small deviations from steady drainage: linear stability analysis

Assuming that a steady drainage, with a constant profileα = v0, is slightly disturbed we
may expand the profile as

α(ξ, τ ) = v0 + εα̃(ξ, τ ) (14)

and solve the general equation, equation (1), by linearization with respect to the small
parameterε. This leads to the following equation forα̃(ξ, τ ):

∂α̃

∂τ
+ ∂

∂ξ

(
2v0α̃ −

√
v0

2

∂α̃

∂ξ

)
= 0 (15)

which is a linear wave equation. Its solution is most easily obtained by Fourier analysis:

α̃(ξ, τ ) =
∫

dk Ak eik(x−2v0t)−(
√

v0/2k2t) (16)

whereAk are the modes of the initial perturbation. We see that an initially small disturbance
εα̃(ξ, τ = 0) travels with a velocityv = 2v0 which is twice the steady-drainage velocity.
The disturbance is damped exponentially in time and the damping factor0 = 1

2

√
v0k

2

is quadratic in the wave numberk. Note the consistency of these results with those of
the previous section. Indeed, the double-wave analysis already showed that the catch-up
velocity was at least twice the initial velocity. The original solitary wave had a width
proportional tov−1/2, consistent with the damping constant0.

It is possible to rewrite the Fourier formula (16), which describes the damping of
the perturbation modes, into a form which expresses the decay of an initial perturbation
εα̃(ξ, τ = 0) using the formalism of Green’s functions:

α̃(ξ, τ ) = 1√
2πτ

√
v0

∫
dy α̃(y, 0) exp

[
− (y − ξ + 2v0τ)2

2τ
√

v0

]
. (17)

Figure 7 shows the result of a numerical calculation of a steady-drainage profile which
is perturbed by Gaussian peak. The symbols are the numerical data (at different times) and
the solid lines were calculated using equation (17). Note the excellent agreement even for
an initial perturbation of 30%.

9. Symmetry considerations

The basic equation (1) obeys the following symmetries, which can be used to generate new
solutions:

(1) translations inξ : α(ξ, τ ) → α(ξ + ξa, τ );
(2) translations inτ : α(ξ, τ ) → α(ξ, τ + τa);
(3) a scaling law:α(ξ, τ ) → λ2α(λξ, λ3τ).

As noted before, the translations are trivial: they could be inferred from the fact that
the basic equation does not contain any explicit dependence on the variablesξ andτ . The
scaling law is not obvious: it connects a linear scaling of the vertical positionξ with a
quadratic scaling of the Plateau border cross sectionα (evident from their dimensions),
and more surprisingly it also implies a cubic scaling of the time variableτ . Using the
program SPDE of Schwarz [17] it is possible to show that the above symmetries constitute
the complete group for the basic equation.

Based on the scaling symmetry, it is possible to present an elegant argument for the
proportionalityα ∝ v of the solitary wave (9). Suppose we are interested in solitary-wave
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Figure 7. Here a perturbation, in the form of a short pulse, is applied to the input flow. Its
height diminishes, in line with linear stability theory. Numerical results are shown as symbols
and the predictions of linear stability theory as continuous curves.

solutions. This means that the basic variable iss = ξ − vτ . Let us scale with a factorλ:
s → λ(ξ − vλ2τ). Hence we can make the associationv ∝ λ2 which is exactly the scaling
for α; therefore we concludeα ∝ v.

10. Reduction to first order

Under some circumstances the foam drainage equation (1) may be well approximated by a
first-order equation which results from the neglect of the last term:

∂α

∂τ
+ ∂α2

∂ξ
= 0. (18)

Physically this arises from the neglect of the pressure variation due to surface tension.
Mathematically, it involves two terms, of order

√
α ∂2α/∂ξ2 and (1/

√
α) (∂α/∂ξ)2. If,

for example, we assume that derivatives∂nα/∂ξn are of the orderαL−n (that is,α varies
smoothly over the lengthL of the sample), the criterion for the validity of this approximation
is

L
√

α � 1. (19)

It should be recalled that bothL and
√

α are lengths, expressed in units ofx0, which is
typically of the order of 1 mm. This means that condition (19) is often satisfied.

In this section we will examine the solutions of equation (18) and these will be seen to
be recognizable in the numerical solutions to the full equation (1). The neatest solution of
equation (18) is the one given by Kraynik [9]:

α (ξ, τ ) = 1

2

ξ − ξa

τ − τa

. (20)
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If the boundary at the top (ξ = 0) is α = 0 then the above solution satisfies it withξa = 0.
Note thatα = 0 can be considered as a no-flow condition mathematically consistent

with equation (18) where the flow isα2 neglecting surface tension effects (which gave the
additional term− 1

2

√
α ∂α/∂ξ in the full equation).

Physically, however, one might argue that surface tension effects can be neglected
throughout the sample, but are important at the top of the sample in order to ensure a
stable foam. In that case the equation to solve is still the first-order equation (18), but the
zero-flow condition at the top involves the complete expression for the flow, i.e., we require

α2 −
√

α

2

∂α

∂ξ
= 0 for ξ = 0 (21)

to supplement equation (18) as a boundary condition.

Figure 8. Kraynik’s elementary solution, equation (20),
of a first-order theory is shown by the broken lines.
When the origin ofξ is the top of a sample, another
solution, given by equation (22), may be developed to
satisfy the boundary condition which requires no flow at
that point. This is represented by the continuous curves.

Figure 9. A full numerical solution of the free-drainage
case at various times, with appropriate boundary
conditions at top and bottom. The linear profile at
the top corresponds to the approximate analysis of
section 10.

For the latter problem, Kraynik’s solution (20) is no longer valid. Using the method of
characteristics it possible to obtain a solution in the following form:

α3/2 − ξ

2(τ − τa)
α1/2 − 1

6(τ − τa)
= 0. (22)

This solution has a finite valueα = [6(τ − τa)]
−2/3 at ξ = 0, which decreases steadily in

time as liquid drains away, and it approaches Kraynik’s solution (20) fort → ∞. Kraynik’s
solution (20) and this one are compared in figure 8.

11. Free drainage

The classic drainage experiment is what we call free drainage. A uniform sample (with
α = α0 throughout) is prepared and then allowed to drain. The easiest quantity to monitor
is the amount of drained liquid as a function of time.

The boundary conditions which we apply were discussed in section 4. A numerical
calculation is shown in figure 9. No analytic solution is available for this behaviour in its
entirety: this accounts for much of the uncertainty of interpretation of past experiments.
Nevertheless, with the benefit of numerical calculations, one can discuss some simple
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features. Those relate to the various simple solutions which we have been discussing.
This is particularly the case if condition (19) is satisfied forα of the order ofα0. Then the
evolution of the profile may be described in the following terms.

Initially, the profile at the top of the sample is well approximated by that of the previous
section, up to the point at whichα = α0 where it continues as a constant (see figure 9).
More crudely, we may use Kraynik’s solution (20) in the same way [9].

This modified solution of the first-order equation has a kink, where the second derivative
is infinite. Its validity even as an approximation is far from obvious. The effect of the
second-order derivative in the equation is to smooth out the kink, but the simplified solution
is still recognizable.

Meanwhile the solution also develops locally at the bottom of the sample. If there
is an underlying liquid the boundary value first rises to its critical value (see section 4).
Thereafter the width of the wet foam regime first increases as the solution tends towards
the steady-state form of equation (8). This is because it is receiving liquid at a constant
rate from above and presumably releases it at the same rate. At some time the range of
influence of the depletion of the top and the accumulation at the bottom meet somewhere in
the middle. The single smooth curve which results then tends towards the equilibrium form
of equation (5). It often happens that the lengthL of the sample is large, compared with
unity. It should be recalled that it is expressed in units ofx0 and that the rising equilibrium
profile has a width of order unity when so expressed. In such a case, the Kraynik solution
of section 10 continues to be approximately valid over the entire sample for a considerable
time. This gives the following simple form for the volume of drained liquid as a function
of time:

1V (τ) ∼ constant− (τ − τa)
−1. (23)

However, it must be remembered that this description fails at long and short times.

12. Other problems of interest

Here we pose two further problems to which our theoretical analysis may be addressed in
order to show that it is not confined to the primary cases already discussed.

12.1. Dripping ice cream

If a foam has a free boundary at the bottom (rather than the contact with the underlying
liquid) at what time will it commence to release liquid? At the risk of complicating the
physics this might be identified with a dripping ice cream.

We would tentatively identify this point with that at whichα reachesαc at the bottom
(again assuming a constant initial profileα = α0). A simple result is available only ifα0

is close toαc. The initial development of the profile at the top will be reminiscent of free
drainage (and we take the Kraynik solution to describe it):

αtop(ξ, τ ) =
{

ξ/2τ ξ < 2τα0

α0 ξ > 2τα0.
(24)

The difference in liquid content between this profile and the initial oneα(ξ, τ ) = α0 is
1V = α2

0τ which will generate a constant flow1V/τ = α2
0 in the lower part of the foam.

The value of the profile at the bottom of the foam will gradually increase (starting fromα0)
until the critical valueαc is reached, at which point the foam will start to release liquid.
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Thus we can estimate the time required for the foam to release liquid by equating1V to
the difference in liquid content between the initial profile and the constant-flow solution (8),
which is shown in figure 4, for whichα = αc at the bottom, and solving forτ . This is the
time it takes for the foam to start to release liquid and we may call it the drip timeτdrip:

τdrip = 1

α
3/2
0

[√
αc

α0
− 1 − arctan

√
αc

α0
+ π

4

]
. (25)

12.2. Foamablility

‘Foamability’, ‘foaming power’ and ‘foaminess’ have often been the objects of attention in
comparing the foaming tendency of different liquid/surfactant/impurity systems. A variety
of tests have been framed for practical purposes, with little theoretical basis. Here we will
focus on one such test and show that a simple theory can be developed, admittedly based
on somewhat naive assumptions.

The test in question consists of the continuous generation of foam in a column by
the addition of bubbles from the liquid below: the eventual steady height of the foam is
measured. This is determined by the balance of the rate of generation of bubbles at the
bottom and that of their disappearance at the top. Obviously that height can be expected to
increase with the rate of foam generation, but how?

Figure 10. Foam height as a function of the gas velocity, as given by equation (27), in a theory
which attempts to describe the standard ‘foamability’ test.

We assume here that there is no rupture of films between the bubbles except at the top,
so that the same bubble size is retained through the sample. The sample is then of the
kind considered in this article, except that it is rising vertically at some velocityv (in our
usual units). Strictly speakingv is a function of position because the foam density is not
constant. We neglect this, as similar approximations (which neglect quantities of order8`)
were made at the very outset in deriving equation (1). Now if we consider the situation
in the frame of reference in which the foam network is static (i.e., moving upward with
the bubbles) the liquid must be draining with the average velocityv everywhere to ensure
a steady state. The solution that we require to describe the resulting profile is the solitary
wave (10) in the moving frame of reference. Translating it back to the laboratory frame at
rest, we obtain a time-independent profile of the form

α(ξ) = v cotanh2
(√

v [ξ − ξa]
)
. (26)
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It must be taken in conjunction with the boundary conditionα = αc at the bottom of the
foam ξ = L. At the top of the foam (ξ = 0) where the bubbles are bursting, we will
require another constant valueα = αH , corresponding, e.g., to a critical pressure difference
between the Plateau borders and the thin liquid films above which the latter breaks. The
bottom boundary condition can then be used to fix the value of the integration constantξa

and the foam heightH can be inferred from the top boundary condition. In doing so we
obtain the following expression forH :

H = 1√
v

arcoth

(
1√
v

√
αcαH − 1√
αc − √

αH

)
(27)

which is shown in figure 10 as a function ofv. In this model, there is a finite value of
H = 1/

√
αH − 1/

√
αc at v = 0 corresponding simply to the equilibrium solution and a

divergence at the point wherev equals the rate of steady flow forα = αH , which is simply
v = αH .

13. Conclusions

We have deliberately limited the scope of this review to the identification, description and
application of various solutions of the foam drainage equation. The aim is to develop
a coherent picture where understanding has up to now been very fragmentary, and to
include a number of original developments. While we believe that it provides a good
first approximation or starting point in analysing all of the experiments mentioned, many
additional factors need to be taken into account and a review of the scattered data that have
been produced up to now could not be given concisely. It is therefore our hope that this
review is one which looks forward rather than back, and serves to stimulate more systematic
experiments undertaken in the light of whatever insight it conveys. Some such experiments
using conductivity, capacitance, NMR and other techniques are already under way.
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Appendix. Derivation of the drainage equation for a random network of Plateau
borders

In this appendix, the physical model is introduced from which the foam drainage equation
is derived. First we focus on a single vertical Plateau border (PB). Afterwards we will
introduce an orientational averaging procedure to take into account the random network
structure of the PBs. The additional factor which this brings in was derived in the Russian
literature (references include [5] and [6]), and also that of Lemlich and collaborators [3].

Consider a single, vertical PB with cross sectionA(x, t) which depends on the downward
vertical coordinatex and timet . The PB is the triangular channel between three bubbles as
indicated in figure 1. The radii of curvature of its sides depend on the pressure difference
between the liquid in the PB and the gas in the bubble as stipulated by the Laplace–Young



3730 G Verbist et al

law:

pg − p` = γ

R
(A1)

whereγ is the surface tension. Assuming that all the bubbles are at equal pressurepg, the
cross section has a symmetrical shape and its areaA is related to the radiusR of circular
sides as

A =
(√

3 − π

2

)
R2 = C2R2. (A2)

If we now consider a volume elementA(x, t) dx of the PB, the forces acting on it are (per
unit volume):

gravity: ρg;
capillarity: −(∂/∂x)p`, wherep` = pg − γ /R = pg − Cγ/

√
A;

dissipation:−ηu/A.

We neglect inertial effects and assume a simple Poiseuille-type dissipation proportional
to the mean liquid velocityu(x, t) in the PB and inversely proportional to the cross section
A(x, t). The proportionality constantη has the dimensions of a viscosity; it is in effect
defined by the above formula for dissipation. Its value is proportional to the liquid viscosity
η` but the coefficient of proportionality depends on the shape of the channel. For a simple
cylinder its value is 8π ≈ 25; for the PB it takes the value 50.

Simple considerations of force balance allow us to express the velocity as a function of
the cross section:

u = 1

η

(
ρgA − Cγ

2
A−1/2 ∂A

∂x

)
(A3)

which can be substituted into the continuity equation

∂A

∂t
+ ∂

∂x
(Au) = 0 (A4)

to obtain the drainage equation

∂A

∂t
+ 1

η

∂

∂x

(
ρgA2 − Cγ

2

√
A

∂A

∂x

)
= 0. (A5)

Choosing units of length and time asx0 = √
Cγρg and t0 = η/

√
Cγρg and scaling as

x = ξx0, A = αx2
0 and t = τ t0, the above equation can be neatly rewritten as

∂α

∂τ
+ ∂

∂ξ

(
α2 −

√
α

2

∂α

∂ξ

)
= 0. (A6)

In reality the PBs are not vertical, but to a good approximation we may assume the
network to consist of randomly orientated PBs. Suppose that a given PB is tilted at a
polar angleθ with respect to the vertical. In that case we should replace thex coordinate
above by the coordinate along the PB,xθ = x/ cosθ . Furthermore the gravitational force
acting on the liquid along the direction of flow, i.e., the PB orientation, isρg cosθ . Both
considerations imply that equation (A5) must be written as

∂A

∂t
+ cos2 θ

η

∂

∂x

(
ρgA2 − Cγ

2

√
A

∂x

∂A

)
= 0. (A7)

The network average is then obtained by averaging cos2 θ as follows:〈
cos2 θ

〉 =
∫ π

0
cos2 θ sinθ dθ

/ ∫ π

0
sinθ dθ = 1

3
(A8)
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which leads to the conclusion that the dimensionless drainage equation for the random
network is identical to that of the single vertical PB.

The final conclusion is therefore that the ‘effective viscosity’ used in the main text is
η∗ = 3η ' 150ηl , whereηl is the bulk liquid viscosity.

It is not at first obvious that this adjustment correctly accounts for the effect of the
junctions, at which the PBs are joined. In fact it does so, to within a good approximation.
We stated at the outset that we would not account for additional dissipation within the
junctions. With such an assumption, and the assumptions of straight PBs and symmetrical
tetrahedral junctions, the conservation rule on each junction is obeyed by gravity-driven
flow as described above [3]. This is because cosθ sums to zero over the four PBs at the
junction. (Strictly speaking these two geometrical approximations are inconsistent, but only
slightly so.)

Either derivation results in a formula for the cross-sectional area of PBs as a function
of height. Some further geometrical technicalities are required to relate this to8l , but we
shall not pursue them here.
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